Regular hamstring stretching increased range of motion
Four pages on PainSci cite Marshall 2011: 1. Quite a Stretch 2. The Complete Guide to Low Back Pain 3. For whatever it’s worth 4. Plasticity versus tolerance: they got more flexible, but how, dammit, HOW?!
PainSci commentary on Marshall 2011: ?This page is one of thousands in the PainScience.com bibliography. It is not a general article: it is focused on a single scientific paper, and it may provide only just enough context for the summary to make sense. Links to other papers and more general information are provided wherever possible.
A nicely done experiment showing that regular hamstring stretching substantially increased range of motion in normal university kids. Specifically, after “a 4-week stretching program consisting of 4 hamstring and hip stretches performed 5 times per week,” their range increased about 16˚ or 20%. That is, when stretched with the same force (torque) applied, to the same level of discomfort, they could go 20% farther. The take-home message is that stretching can definitely increase range of motion — for whatever that’s worth.
The authors followed this data into an overinterpretation about how range increased, perhaps trying to score points for Team Plasticity — that is, for the idea that the body adapts physically to stretch, rather than neurologically. Because range increased, but pain at the end of the range did not, they unwisely concluded that, although they “cannot completely rule out volitional stretch tolerance as a possible explanation for changes in extensibility, it does seem that hamstring pain elicited during a passive stretch has little involvement in explaining training related improvements.” But an increase in range with no change in pain does constitute an increase in tolerance! Although it wasn’t measured, it’s safe to assume the subjects’ pain would have been less if stretched only to the end of their original range.
But the study is actually agnostic about mechanism. The authors place their bet on tissue plasticity, while I put mine on tolerance, but this experiment cannot actually settle the bet — it demonstrated only greater range and reduced stiff, and not whether it was due to neural or structural adaptations.
original abstract †Abstracts here may not perfectly match originals, for a variety of technical and practical reasons. Some abstacts are truncated for my purposes here, if they are particularly long-winded and unhelpful. I occasionally add clarifying notes. And I make some minor corrections.
To measure hamstring extensibility, stiffness, stretch tolerance, and strength following a 4-week passive stretching program. Randomized controlled trial. Twenty-two healthy participants were randomly assigned to either a 4-week stretching program consisting of 4 hamstring and hip stretches performed 5 times per week, or a non-stretching control group. Hamstring extensibility and stiffness were measured before and after training using the instrumented straight leg raise test (iSLR). Stretch tolerance was measured as the pain intensity (visual analog scale; VAS) elicited during the maximal stretch. Hamstring strength was measured using isokinetic dynamometry at 30 and 120° s(-1). Hamstring extensibility increased by 20.9% in the intervention group following 4 weeks of training (p<0.001; d=0.86). Passive stiffness was reduced by 31% in the intervention group (p<0.05; d=-0.89). Stretch tolerance VAS scores were not different between groups at either time point, and no changes were observed following training. There were no changes in hamstring concentric strength measured at 30 and 120° s(-1). Passive stretching increases hamstring extensibility and decreases passive stiffness, with no change in stretch tolerance defined by pain intensity during the stretch. Compared to previous research, the volume of stretching was higher in this study. The volume of prescribed stretching is important for eliciting the strong clinical effect observed in this study.
related content
- “Extensibility of the hamstrings is best explained by mechanical components of muscle contraction, not behavioral measures in individuals with chronic low back pain,” Marshall et al, PM & R: The Journal of Injury, Function, and Rehabilitation, 2009.
- “Influence of static stretching on hamstring flexibility in healthy young adults: Systematic review and meta-analysis,” Medeiros et al, Physiother Theory Pract, 2016.
- “The effect of time and frequency of static stretching on flexibility of the hamstring muscles,” Bandy et al, Physical Therapy, 1997.
- “Comparison of ballistic and static stretching on hamstring muscle length using an equal stretching dose,” Covert et al, Journal of Strength & Conditioning Research, 2010.
- “The Effectiveness of PNF Versus Static Stretching on Increasing Hip-Flexion Range of Motion,” Lempke et al, Journal of Sport Rehabilitation, 2018.
This page is part of the PainScience BIBLIOGRAPHY, which contains plain language summaries of thousands of scientific papers & others sources. It’s like a highly specialized blog. A few highlights:
- Placebo analgesia in physical and psychological interventions: Systematic review and meta-analysis of three-armed trials. Hohenschurz-Schmidt 2024 Eur J Pain.
- Recovery trajectories in common musculoskeletal complaints by diagnosis contra prognostic phenotypes. Aasdahl 2021 BMC Musculoskelet Disord.
- Cannabidiol (CBD) products for pain: ineffective, expensive, and with potential harms. Moore 2023 J Pain.
- Moderators of the effect of therapeutic exercise for knee and hip osteoarthritis: a systematic review and individual participant data meta-analysis. Holden 2023 The Lancet Rheumatology.
- Inciting events associated with lumbar disc herniation. Suri 2010 Spine J.