PainScience.com Sensible advice for aches, pains & injuries
 
 
bibliography * The PainScience Bibliography contains plain language summaries of thousands of scientific papers and others sources, like a specialized blog. This page is about a single scientific paper in the bibliography, Cohen 2014.

Neuropathic pain: mechanisms and their clinical implications

updated
Tags: chronic pain, neurology, pain problems

PainSci summary of Cohen 2014?This page is one of thousands in the PainScience.com bibliography. It is not a general article: it is focused on a single scientific paper, and it may provide only just enough context for the summary to make sense. Links to other papers and more general information are provided at the bottom of the page, as often as possible. ★★★☆☆?3-star ratings are for typical studies with no more (or less) than the usual common problems. Ratings are a highly subjective opinion, and subject to revision at any time. If you think this paper has been incorrectly rated, please let me know.

Allegedly aimed at clinicians, this review of neuropathic pain is advanced, technical, and dry, but does offer some useful review and substantiation of a few key points. Neuropathic pain is common, accounting for a substantial percentage of chronic pain, and too complex to treat effectively. There’s so much overlap between neuropathic and nociceptive pain that “many experts view them as different points on a chronic pain continuum, rather than distinct entities.”

original abstractAbstracts here may not perfectly match originals, for a variety of technical and practical reasons. Some abstacts are truncated for my purposes here, if they are particularly long-winded and unhelpful. I occasionally add clarifying notes. And I make some minor corrections.

Neuropathic pain can develop after nerve injury, when deleterious changes occur in injured neurons and along nociceptive and descending modulatory pathways in the central nervous system. The myriad neurotransmitters and other substances involved in the development and maintenance of neuropathic pain also play a part in other neurobiological disorders. This might partly explain the high comorbidity rates for chronic pain, sleep disorders, and psychological conditions such as depression, and why drugs that are effective for one condition may benefit others. Neuropathic pain can be distinguished from non-neuropathic pain by two factors. Firstly, in neuropathic pain there is no transduction (conversion of a nociceptive stimulus into an electrical impulse). Secondly, the prognosis is worse: injury to major nerves is more likely than injury to non-nervous tissue to result in chronic pain. In addition, neuropathic pain tends to be more refractory than non-neuropathic pain to conventional analgesics, such as non-steroidal anti-inflammatory drugs and opioids. However, because of the considerable overlap between neuropathic and nociceptive pain in terms of mechanisms and treatment modalities, it might be more constructive to view these entities as different points on the same continuum. This review focuses on the mechanisms of neuropathic pain, with special emphasis on clinical implications.

related content

One article on PainScience.com cites Cohen 2014 as a source:


This page is part of the PainScience BIBLIOGRAPHY, which contains plain language summaries of thousands of scientific papers & others sources. It’s like a highly specialized blog. A few highlights: