Similar results no matter how you strength train
One article on PainSci cites Wernbom 2007: Strength Training Frequency
PainSci commentary on Wernbom 2007: ?This page is one of thousands in the PainScience.com bibliography. It is not a general article: it is focused on a single scientific paper, and it may provide only just enough context for the summary to make sense. Links to other papers and more general information are provided wherever possible.
This analysis of strength training variables — frequency, intensity and volume of training — found “insufficient evidence for the superiority of any mode and/or type of muscle action over other modes and types of training.” In other words, results were pretty good and roughly equal across the board, regardless of how regimen variables are tweaked.
original abstract †Abstracts here may not perfectly match originals, for a variety of technical and practical reasons. Some abstacts are truncated for my purposes here, if they are particularly long-winded and unhelpful. I occasionally add clarifying notes. And I make some minor corrections.
Strength training is an important component in sports training and rehabilitation. Quantification of the dose-response relationships between training variables and the outcome is fundamental for the proper prescription of resistance training. The purpose of this comprehensive review was to identify dose-response relationships for the development of muscle hypertrophy by calculating the magnitudes and rates of increases in muscle cross-sectional area induced by varying levels of frequency, intensity and volume, as well as by different modes of strength training. Computer searches in the databases MEDLINE, SportDiscus and CINAHL were performed as well as hand searches of relevant journals, books and reference lists. The analysis was limited to the quadriceps femoris and the elbow flexors, since these were the only muscle groups that allowed for evaluations of dose-response trends. The modes of strength training were classified as dynamic external resistance (including free weights and weight machines), accommodating resistance (e.g. isokinetic and semi-isokinetic devices) and isometric resistance. The subcategories related to the types of muscle actions used. The results demonstrate that given sufficient frequency, intensity and volume of work, all three types of muscle actions can induce significant hypertrophy at an impressive rate and that, at present, there is insufficient evidence for the superiority of any mode and/or type of muscle action over other modes and types of training. Tentative dose-response relationships for each variable are outlined, based on the available evidence, and interactions between variables are discussed. In addition, recommendations for training and suggestions for further research are given.
This page is part of the PainScience BIBLIOGRAPHY, which contains plain language summaries of thousands of scientific papers & others sources. It’s like a highly specialized blog. A few highlights:
- Inciting events associated with lumbar disc herniation. Suri 2010 Spine J.
- Prediction of an extruded fragment in lumbar disc patients from clinical presentations. Pople 1994 Spine (Phila Pa 1976).
- Characteristics of patients with low back and leg pain seeking treatment in primary care: baseline results from the ATLAS cohort study. Konstantinou 2015 BMC Musculoskelet Disord.
- Effectiveness and cost-effectiveness of universal school-based mindfulness training compared with normal school provision in reducing risk of mental health problems and promoting well-being in adolescence: the MYRIAD cluster randomised controlled trial. Kuyken 2022 Evid Based Ment Health.
- Is there a relationship between throbbing pain and arterial pulsations? Mirza 2012 J Neurosci.