Icing interferes with strength training
Two articles on PainSci cite Yamane 2006: 1. A Deep Dive into Delayed-Onset Muscle Soreness 2. Massage Does Not Reduce Inflammation

PainSci commentary on Yamane 2006: ?This page is one of thousands in the PainScience.com bibliography. It is not a general article: it is focused on a single scientific paper, and it may provide only just enough context for the summary to make sense. Links to other papers and more general information are provided wherever possible.
It’s only one study, but … yikes! This fascinating experiment done by Japanese researchers showed that regular icing for a few weeks after workouts resulted in a significant reduction in training effects: ice users didn’t get as strong. This implies that icing may interfere with normal post-exercise muscle physiology and prevent the process of muscles adapting to stress. This finding is reinforced by Tseng et al.
original abstract †Abstracts here may not perfectly match originals, for a variety of technical and practical reasons. Some abstacts are truncated for my purposes here, if they are particularly long-winded and unhelpful. I occasionally add clarifying notes. And I make some minor corrections.
The influence of regular post-exercise cold application to exercised muscles trained by ergometer cycling (leg muscles) or handgrip exercise using a weight-loaded handgrip ergometer (forearm flexor muscles) was studied in human volunteers. Muscle loads were applied during exercise programs three to four times a week for 4-6 weeks. Besides measuring parameters characterizing muscle performance, femoral and brachial artery diameters were determined ultrasonographically. Training effects were identified by comparing pre- and post-training parameters in matched groups separately for the trained limbs cooled after exercise by cold-water immersion and the corresponding trained limbs kept at room temperature. Significant training effects were three times more frequent in the control than in the cold group, including increases in artery diameters in the control but not in the cold group. It is concluded that training-induced molecular and humoral adjustments, including muscle hyperthermia, are physiological, transient and essential for training effects (myofiber regeneration, muscle hypertrophy and improved blood supply). Cooling generally attenuates these temperature-dependent processes and, in particular, hyperthermia-induced HSP formation. This seems disadvantageous for training, in contrast to the beneficial combination of rest, ice, compression and elevation in the treatment of macroscopic musculo-tendinous damage.
related content
- “Massage therapy attenuates inflammatory signaling after exercise-induced muscle damage,” Crane et al, Science Translational Medicine, 2012.
- “Topical cooling (icing) delays recovery from eccentric exercise-induced muscle damage,” Tseng et al, Journal of Strength & Conditioning Research, 2013.
This page is part of the PainScience BIBLIOGRAPHY, which contains plain language summaries of thousands of scientific papers & others sources. It’s like a highly specialized blog. A few highlights:
- Cannabidiol (CBD) products for pain: ineffective, expensive, and with potential harms. Moore 2023 J Pain.
- Inciting events associated with lumbar disc herniation. Suri 2010 Spine J.
- Prediction of an extruded fragment in lumbar disc patients from clinical presentations. Pople 1994 Spine (Phila Pa 1976).
- Characteristics of patients with low back and leg pain seeking treatment in primary care: baseline results from the ATLAS cohort study. Konstantinou 2015 BMC Musculoskelet Disord.
- Effectiveness and cost-effectiveness of universal school-based mindfulness training compared with normal school provision in reducing risk of mental health problems and promoting well-being in adolescence: the MYRIAD cluster randomised controlled trial. Kuyken 2022 Evid Based Ment Health.