The effect of passive stretching on delayed onset muscle soreness, and other detrimental effects following eccentric exercise
Two pages on PainSci cite Lund 1998: 1. Quite a Stretch 2. A Deep Dive into Delayed-Onset Muscle Soreness
PainSci notes on Lund 1998:
From the abstract: “There was no difference in the reported variables between experiments one and two. It is concluded that passive stretching did not have any significant influence on increased plasma-CK, muscle pain, muscle strength and the PCr/P(i) ratio, indicating that passive stretching after eccentric exercise cannot prevent secondary pathological alterations.”
original abstract †Abstracts here may not perfectly match originals, for a variety of technical and practical reasons. Some abstacts are truncated for my purposes here, if they are particularly long-winded and unhelpful. I occasionally add clarifying notes. And I make some minor corrections.
The aim of this study was to measure if passive stretching would influence delayed onset muscle soreness (DOMS), dynamic muscle strength, plasma creatine kinase concentration (CK) and the ratio of phosphocreatine to inorganic phosphate (PCr/Pi) following eccentric exercise. Seven healthy untrained women, 28-46 years old, performed eccentric exercise with the right m. quadriceps in an isokinetic dynamometer (Biodex, angle velocity: 60°.s-1) until exhaustion, in two different experiments, with an interval of 13-23 months. In both experiments the PCr/Pi ratio, dynamic muscle strength, CK and muscle pain were measured before the eccentric exercise (day 0) and the following 7 d. In the second experiment daily passive stretching (3 times of 30 s duration, with a pause of 30 s in between) of m. quadriceps was included in the protocol. The stretching was performed before and immediately after the eccentric exercise at day 0, and before measurements of the dependent variables daily for the following 7 d. The eccentric exercise alone led to significant decreases in PCr/Pi ratio (P<0.001) and muscle strength (P<0.001), and an increase in CK concentration (P<0.01). All subjects reported pain in the right m. quadriceps with a peak 48 h after exercise. There was no difference in the reported variables between experiments one and two. It is concluded that passive stretching did not have any significant influence on increased plasma-CK, muscle pain, muscle strength and the PCr/Pi ratio, indicating that passive stretching after eccentric exercise cannot prevent secondary pathological alterations.
related content
Specifically regarding Lund 1998:
- “Stretching to prevent or reduce muscle soreness after exercise,” Herbert et al, Cochrane Database of Systematic Reviews, 2011.
This page is part of the PainScience BIBLIOGRAPHY, which contains plain language summaries of thousands of scientific papers & others sources. It’s like a highly specialized blog. A few highlights:
- Topical glyceryl trinitrate (GTN) and eccentric exercises in the treatment of mid-portion achilles tendinopathy (the NEAT trial): a randomised double-blind placebo-controlled trial. Kirwan 2024 Br J Sports Med.
- Placebo analgesia in physical and psychological interventions: Systematic review and meta-analysis of three-armed trials. Hohenschurz-Schmidt 2024 Eur J Pain.
- Recovery trajectories in common musculoskeletal complaints by diagnosis contra prognostic phenotypes. Aasdahl 2021 BMC Musculoskelet Disord.
- Cannabidiol (CBD) products for pain: ineffective, expensive, and with potential harms. Moore 2023 J Pain.
- Moderators of the effect of therapeutic exercise for knee and hip osteoarthritis: a systematic review and individual participant data meta-analysis. Holden 2023 The Lancet Rheumatology.