Sensible advice for aches, pains & injuries
bibliography * The PainScience Bibliography contains plain language summaries of thousands of scientific papers and others sources, like a specialized blog. This page is about a single scientific paper in the bibliography, Issurin 1994.

Effect of vibratory stimulation training on maximal force and flexibility

Issurin VB, Liebermann DG, Tenenbaum G. Effect of vibratory stimulation training on maximal force and flexibility. J Sports Sci. 1994 Dec;12(6):561–6. PubMed #7853452.
Tags: stretch, exercise, self-treatment, treatment, muscle

PainSci summary of Issurin 1994?This page is one of thousands in the bibliography. It is not a general article: it is focused on a single scientific paper, and it may provide only just enough context for the summary to make sense. Links to other papers and more general information are provided at the bottom of the page, as often as possible. ★★★☆☆?3-star ratings are for typical studies with no more (or less) than the usual common problems. Ratings are a highly subjective opinion, and subject to revision at any time. If you think this paper has been incorrectly rated, please let me know.

In this 1994 experiment, as described by Sands et al, gymnasts “used a vibrating ring suspended by a cable, in which the foot of the subject was placed while they stretched forward over the raised leg, targeting the hamstrings. The resulting increase in ROM was astonishing. These researchers demonstrated that vibration could enhance flexibility.” The results were replicated by Sands et al in 2006, and Kinser et al in 2008.

~ Paul Ingraham

original abstractAbstracts here may not perfectly match originals, for a variety of technical and practical reasons. Some abstacts are truncated for my purposes here, if they are particularly long-winded and unhelpful. I occasionally add clarifying notes. And I make some minor corrections.

In this study, we investigated a new method of training for maximal strength and flexibility, which included exertion with superimposed vibration (vibratory stimulation, VS) on target muscles. Twenty-eight male athletes were divided into three groups, and trained three times a week for 3 weeks in one of the following conditions: (A) conventional exercises for strength of the arms and VS stretching exercises for the legs; (B) VS strength exercises for the arms and conventional stretching exercises for the legs; (C) irrelevant training (control group). The vibration was applied at 44 Hz while its amplitude was 3 mm. The effect of training was evaluated by means of isotonic maximal force, heel-to-heel length in the two-leg split across, and flex-and-reach test for body flexion. The VS strength training yielded an average increase in isotonic maximal strength of 49.8%, compared with an average gain of 16% with conventional training, while no gain was observed for the control group. The VS flexibility training resulted in an average gain in the legs split of 14.5 cm compared with 4.1 cm for the conventional training and 2 cm for the control groups, respectively. The ANOVA revealed significant pre-post training effects and an interaction between pre-post training and 'treatment' effects (P < 0.001) for the isotonic maximal force and both flexibility tests. It was concluded that superimposed vibrations applied for short periods allow for increased gains in maximal strength and flexibility.

related content

These three articles on cite Issurin 1994 as a source:

This page is part of the PainScience BIBLIOGRAPHY, which contains plain language summaries of thousands of scientific papers & others sources. It’s like a highly specialized blog. A few highlights: