Induction of muscle cramps by nociceptive stimulation of latent myofascial trigger points
PainSci commentary on Ge 2008: ?This page is one of thousands in the PainScience.com bibliography. It is not a general article: it is focused on a single scientific paper, and it may provide only just enough context for the summary to make sense. Links to other papers and more general information are provided wherever possible.
It’s possible that trigger points irritate muscles enough to cause cramping. In this experiment, 14 brave volunteers allowed injection of an irritant into their trigger points to see if it would cause cramping. It did!
Latent trigger points were identified with electromyography, and EMG was also used to monitor for cramps before, during, and after the injection of glutamate. For comparison, they also injected saline solution, and injected a control point in healthy muscle.
Injection of both glutamate and saline caused more pain in trigger points than the control points, and glutamate hurt more than saline solution. Glutamate caused cramping in nearly everyone (92%) when injected into trigger points. Saline solution and control points caused no cramping at all.
The authors reasonably concluded that “latent MTrPs could be involved in the genesis of muscle cramps.”
original abstract †Abstracts here may not perfectly match originals, for a variety of technical and practical reasons. Some abstacts are truncated for my purposes here, if they are particularly long-winded and unhelpful. I occasionally add clarifying notes. And I make some minor corrections.
The aim of this present study is to test the hypothesis that nociceptive stimulation of latent myofascial trigger points (MTrPs) increases the occurrence of local muscle cramps. Nociceptive muscle stimulation was obtained by a bolus injection of glutamate (0.1 ml, 0.5 M) into a latent MTrP and a control point (a non-MTrP) located in the right or left gastrocnemius medialis muscles in 14 healthy subjects. A bolus of isotonic saline (0.9%, 0.1 ml) injection served as a control. The injections were guided by intramuscular electromyography (EMG) showing resting spontaneous electrical activity at a latent MTrP and no such activity at a non-MTrP. Intramuscular and surface EMG activities in the gastrocnemius medialis muscle were recorded pre-, during-, and post-injection for a period of 8 min to monitor the occurrence of muscle cramps, which are characterized by a brief episodic burst of high levels of EMG activity. The results showed that glutamate and isotonic saline injections into the latent MTrPs induced higher peak pain intensity than into the non-MTrPs (both P < 0.05). Glutamate injection induced higher peak pain intensity than isotonic saline injection into either latent MTrPs or non-MTrPs (both P < 0.05). Muscle camps were observed in 92.86% of the subjects following glutamate injection into the latent MTrPs, but not into the non-MTrPs (P < 0.001). No muscle cramps were recorded following isotonic saline injection into either the latent MTrPs or the non-MTrPs. These results suggest that latent MTrPs could be involved in the genesis of muscle cramps. Focal increase in nociceptive sensitivity at MTrPs constitutes one of the mechanisms underlying muscle cramps.
related content
- “Microscopic features and transient contraction of palpable bands in canine muscle,” Simons et al, Am J Phys Med, 1976.
- “Endplate potentials are common to midfiber myofacial trigger points,” Simons et al, Am J Phys Med Rehabil, 2002.
- “Accelerated muscle fatigability of latent myofascial trigger points in humans,” Ge et al, Pain Med, 2012.
- “Two-dimensional ultrasound and ultrasound elastography imaging of trigger points in women with myofascial pain syndrome treated by acupuncture and electroacupuncture: a double-blinded randomized controlled pilot study,” Müller et al, Ultrason Imaging, 2015.
- “Assessment of myofascial trigger points (MTrPs): a new application of ultrasound imaging and vibration sonoelastography,” Sikdar et al, Conf Proc IEEE Eng Med Biol Soc, 2008.
- “Uncovering the biochemical milieu of myofascial trigger points using in vivo microdialysis: an application of muscle pain concepts to myofascial pain syndrome,” Shah et al, Journal of Bodywork & Movement Therapies, 2008.
- “Ability of magnetic resonance elastography to assess taut bands,” Chen et al, Clin Biomech (Bristol, Avon), 2008.
- “Identification and quantification of myofascial taut bands with magnetic resonance elastography,” Chen et al, Archives of Physical Medicine & Rehabilitation, 2007.
This page is part of the PainScience BIBLIOGRAPHY, which contains plain language summaries of thousands of scientific papers & others sources. It’s like a highly specialized blog. A few highlights:
- Inciting events associated with lumbar disc herniation. Suri 2010 Spine J.
- Prediction of an extruded fragment in lumbar disc patients from clinical presentations. Pople 1994 Spine (Phila Pa 1976).
- Characteristics of patients with low back and leg pain seeking treatment in primary care: baseline results from the ATLAS cohort study. Konstantinou 2015 BMC Musculoskelet Disord.
- Effectiveness and cost-effectiveness of universal school-based mindfulness training compared with normal school provision in reducing risk of mental health problems and promoting well-being in adolescence: the MYRIAD cluster randomised controlled trial. Kuyken 2022 Evid Based Ment Health.
- Is there a relationship between throbbing pain and arterial pulsations? Mirza 2012 J Neurosci.