Range of motion, neuromechanical, and architectural adaptations to plantar flexor stretch training in humans
One article on PainSci cites Blazevich 2014: Quite a Stretch
PainSci notes on Blazevich 2014:
For this study, several people stretched their calf muscles twice per day for three weeks (each session consisted of 4 stretches of 30 seconds). They were compared to people who did not stretch. Measurements included changes in muscle and tendon mechanics, muscle activity, and spinal motoneuron excitability. The non-stretchers didn’t change, while stretch training “elicited a 19.9% increase in dorsiflexion range of motion (ROM) and a 28% increase in passive joint moment at end ROM.” However, the ROM improvement was not explained by changes in the muscle structure: “Thus, increases in end ROM were underpinned by increases in maximum tolerable passive joint moment (stretch tolerance).”
original abstract †Abstracts here may not perfectly match originals, for a variety of technical and practical reasons. Some abstacts are truncated for my purposes here, if they are particularly long-winded and unhelpful. I occasionally add clarifying notes. And I make some minor corrections.
The neuromuscular adaptations in response to muscle stretch training have not been clearly described. In the present study, changes in muscle (at fascicular and whole muscle levels) and tendon mechanics, muscle activity, and spinal motoneuron excitability were examined during standardized plantar flexor stretches after 3 wk of twice daily stretch training (4 × 30 s). No changes were observed in a nonexercising control group (n = 9), however stretch training elicited a 19.9% increase in dorsiflexion range of motion (ROM) and a 28% increase in passive joint moment at end ROM (n = 12). Only a trend toward a decrease in passive plantar flexor moment during stretch (-9.9%; P = 0.15) was observed, and no changes in electromyographic amplitudes during ROM or at end ROM were detected. Decreases in H(max):M(max) (tibial nerve stimulation) were observed at plantar flexed (gastrocnemius medialis and soleus) and neutral (soleus only) joint angles, but not with the ankle dorsiflexed. Muscle and fascicle strain increased (12 vs. 23%) along with a decrease in muscle stiffness (-18%) during stretch to a constant target joint angle. Muscle length at end ROM increased (13%) without a change in fascicle length, fascicle rotation, tendon elongation, or tendon stiffness following training. A lack of change in maximum voluntary contraction moment and rate of force development at any joint angle was taken to indicate a lack of change in series compliance of the muscle-tendon unit. Thus, increases in end ROM were underpinned by increases in maximum tolerable passive joint moment (stretch tolerance) and both muscle and fascicle elongation rather than changes in volitional muscle activation or motoneuron pool excitability.
This page is part of the PainScience BIBLIOGRAPHY, which contains plain language summaries of thousands of scientific papers & others sources. It’s like a highly specialized blog. A few highlights:
- Association of Lumbar MRI Findings with Current and Future Back Pain in a Population-based Cohort Study. Kasch 2022 Spine (Phila Pa 1976).
- A double-blinded randomised controlled study of the value of sequential intravenous and oral magnesium therapy in patients with chronic low back pain with a neuropathic component. Yousef 2013 Anaesthesia.
- Is Neck Posture Subgroup in Late Adolescence a Risk Factor for Persistent Neck Pain in Young Adults? A Prospective Study. Richards 2021 Phys Ther.
- Sudden amnesia resulting in pain relief: the relationship between memory and pain. Choi 2007 Pain.
- Photobiomodulation therapy is not better than placebo in patients with chronic nonspecific low back pain: a randomised placebo-controlled trial. Guimarães 2021 Pain.