Hypertrophy in the cervical muscles and thoracic discs in bed rest?
Two articles on PainSci cite Belavý 2013: 1. The Complete Guide to Low Back Pain 2. 6 Main Causes of Morning Back Pain
original abstract †Abstracts here may not perfectly match originals, for a variety of technical and practical reasons. Some abstacts are truncated for my purposes here, if they are particularly long-winded and unhelpful. I occasionally add clarifying notes. And I make some minor corrections.
The impact of prolonged bed rest on the cervical and upper thoracic spine is unknown. In the 2nd Berlin BedRest Study (BBR2-2), 24 male subjects underwent 60-day bed rest and performed either no exercise, resistive exercise, or resistive exercise with whole body vibration. Subjects were followed for 2 yr after bed rest. On axial cervical magnetic resonance images from the skull to T3, the volumes of the semispinalis capitis, splenius capitis, spinalis cervicis, longus capitis, longus colli, levator scapulae, sternocleidomastoid, middle and posterior scalenes, and anterior scalenes were measured. Disc height, anteroposterior width, and volume were measured from C2/3 to T6/7 on sagittal images. The volume of all muscles, with the exception of semispinalis capitis, increased during bed rest (P < 0.025). There were no significant differences between the groups for changes in the muscles. Increased upper and midthoracic spine disc height and volume (P < 0.001) was seen during bed rest, and disc height increases persisted at least 6 mo after bed rest. Increases in thoracic disc height were greater (P = 0.003) in the resistive vibration exercise group than in control. On radiological review, two subjects showed new injuries to the mid-lower thoracic spine. One of these subjects reported a midthoracic pain incident during maximal strength testing before bed rest and the other after countermeasure exercise on day 3 of bed rest. We conclude that bed rest is associated with increased disc size in the thoracic region and increases in muscle volume at the neck. The exercise device needs to be modified to ensure that load is distributed in a more physiological fashion.
related content
- “Disc herniations in astronauts: What causes them, and what does it tell us about herniation on earth?,” Daniel L Belavy, Michael Adams, Helena Brisby, Barbara Cagnie, Lieven Danneels, Jeremy Fairbank, Alan R Hargens, Stefan Judex, Richard A Scheuring, Roope Sovelius, Jill Urban, Jaap H van Dieën, and Hans-Joachim Wilke, European Spine Journal, 2016.
- “Changes in water content of intervertebral discs and paravertebral muscles before and after bed rest,” Yoshihiro Matsumura, Yuichi Kasai, Hideaki Obata, Shigeru Matsushima, Tadashi Inaba, and Atsumasa Uchida, Journal of Orthopaedic Science, 2009.
This page is part of the PainScience BIBLIOGRAPHY, which contains plain language summaries of thousands of scientific papers & others sources. It’s like a highly specialized blog. A few highlights:
- No long-term effects after a three-week open-label placebo treatment for chronic low back pain: a three-year follow-up of a randomized controlled trial. Kleine-Borgmann 2022 Pain.
- Exercise and education versus saline injections for knee osteoarthritis: a randomised controlled equivalence trial. Bandak 2022 Ann Rheum Dis.
- Association of Lumbar MRI Findings with Current and Future Back Pain in a Population-based Cohort Study. Kasch 2022 Spine (Phila Pa 1976).
- A double-blinded randomised controlled study of the value of sequential intravenous and oral magnesium therapy in patients with chronic low back pain with a neuropathic component. Yousef 2013 Anaesthesia.
- Is Neck Posture Subgroup in Late Adolescence a Risk Factor for Persistent Neck Pain in Young Adults? A Prospective Study. Richards 2021 Phys Ther.