Detailed guides to painful problems, treatments & more

Primary and secondary effects of real-time feedback to reduce vertical loading rate during running

PainSci » bibliography » Baggaley et al 2017
Tags: barefoot, foot, leg, limbs, pain problems, running, exercise, self-treatment, treatment

Five articles on PainSci cite Baggaley 2017: 1. Is Running on Pavement Risky?2. The Complete Guide to IT Band Syndrome3. The Complete Guide to Patellofemoral Pain Syndrome4. Complete Guide to Plantar Fasciitis5. Shin Splints Treatment, The Complete Guide

PainSci notes on Baggaley 2017:

This paper presents evidence that we can definitely run more softly if we try to do so. Simply slowing down has a smaller but likely safer effect; a forefoot strike (as is standard in barefoot or minimally shod running) has more of an effect, but is probably less safe: “potentially injurious secondary effects associated with forefoot strike and cues to reduce average vertical loading rate may undermine their clinical utility.”

original abstract Abstracts here may not perfectly match originals, for a variety of technical and practical reasons. Some abstacts are truncated for my purposes here, if they are particularly long-winded and unhelpful. I occasionally add clarifying notes. And I make some minor corrections.

Gait modifications are often proposed to reduce average loading rate (AVLR) during running. While many modifications may reduce AVLR, little work has investigated secondary gait changes. Thirty-two rearfoot runners [16M, 16F, 24.7 (3.3) years, 22.72 (3.01) kg/m(2) ,>16 km/week] ran at a self-selected speed (2.9 ± 0.3 m/s) on an instrumented treadmill, while 3D mechanics were calculated via real-time data acquisition. Real-time visual feedback was provided in a randomized order to cue a forefoot strike (FFS), a minimum 7.5% decrease in step length, or a minimum 15% reduction in AVLR. AVLR was reduced by FFS (mean difference = 26.4 BW/s; 95% CI = 20.1, 32.7; P < 0.001), shortened step length (8.4 BW/s; 95% CI = 2.9, 14.0; P = 0.004), and cues to reduce AVLR (14.9 BW/s; 95% CI = 10.2, 19.6; P < 0.001). FFS, shortened step length, and cues to reduce AVLR all reduced eccentric knee joint work per km [(-48.2 J/kg*m; 95% CI = -58.1, -38.3; P < 0.001), (-35.5 J/kg*m; 95% CI = -42.4, 28.6; P < 0.001), (-23.1 J/kg*m; 95% CI = -33.3, -12.9; P < 0.001)]. However, FFS and cues to reduce AVLR also increased eccentric ankle joint work per km [(54.49 J/kg*m; 95% CI = 45.3, 63.7; P < 0.001), (9.20 J/kg*m; 95% CI = 1.7, 16.7; P = 0.035)]. Potentially injurious secondary effects associated with FFS and cues to reduce AVLR may undermine their clinical utility. Alternatively, a shortened step length resulted in small reductions in AVLR, without any potentially injurious secondary effects.

This page is part of the PainScience BIBLIOGRAPHY, which contains plain language summaries of thousands of scientific papers & others sources. It’s like a highly specialized blog. A few highlights: