Detailed guides to painful problems, treatments & more

Interpretation of EMG integral or RMS and estimates of "neuromuscular efficiency" can be misleading in fatiguing contraction

PainSci » bibliography » Arabadzhiev et al 2010
Tags: muscle pain, etiology, muscle, pain problems, pro

original abstract Abstracts here may not perfectly match originals, for a variety of technical and practical reasons. Some abstacts are truncated for my purposes here, if they are particularly long-winded and unhelpful. I occasionally add clarifying notes. And I make some minor corrections.

In occupational and sports physiology, reduction of neuromuscular efficiency (NME) and elevation of amplitude characteristics, such as root mean square (RMS) or integral of surface electromyographic (EMG) signals detected during fatiguing submaximal contraction are often related to changes in neural drive. However, there is data showing changes in the EMG integral (I(EMG)) and RMS due to peripheral factors. Causes for these changes are not fully understood. On the basis of computer simulation, we demonstrate that lengthening of intracellular action potential (IAP) profile typical for fatiguing contraction could affect EMG amplitude characteristics stronger than alteration in neural drive (central factors) defined by number of active motor units (MUs) and their firing rates. Thus, relation of these EMG amplitude characteristics only to central mechanisms can be misleading. It was also found that to discriminate between changes in RMS or I(EMG) due to alterations in neural drive from changes due to alterations in peripheral factors it is better to normalize RMS of EMG signals to the RMS of M-wave. In massive muscles, such normalization is more appropriate than normalization to either peak-to-peak amplitude or area of M-wave proposed in literature.

related content

This page is part of the PainScience BIBLIOGRAPHY, which contains plain language summaries of thousands of scientific papers & others sources. It’s like a highly specialized blog. A few highlights: