Transdermal delivery of molecules is limited by full epidermis, not just stratum corneum
original abstract †Abstracts here may not perfectly match originals, for a variety of technical and practical reasons. Some abstacts are truncated for my purposes here, if they are particularly long-winded and unhelpful. I occasionally add clarifying notes. And I make some minor corrections.
PURPOSE: Most methods to increase transdermal drug delivery focus on increasing stratum corneum permeability, without addressing the need to increase permeability of viable epidermis. Here, we assess the hypothesis that viable epidermis offers a significant permeability barrier that becomes rate limiting upon sufficient permeabilization of stratum corneum.
METHODS: We tested this hypothesis by using calibrated microdermabrasion to selectively remove stratum corneum or full epidermis in pig and human skin, and then measuring skin permeability to a small molecule (sulforhodamine) and macromolecules (bovine serum albumin, insulin, inactivated influenza vaccine) in vitro.
RESULTS: We found that removal of stratum corneum dramatically increased skin permeability to all compounds tested. However, removal of full epidermis increased skin permeability by another 1-2 orders of magnitude. We also studied the effects of removing skin tissue only from localized spots on the skin surface by covering skin with a mask containing 125-μm holes during tissue removal. Skin permeabilized in this less-invasive way showed similar results. This suggests that microdermabrasion of skin using a mask may provide an effective way to increase skin permeability.
CONCLUSIONS: We conclude that viable epidermis offers a significant permeability barrier that becomes rate limiting upon removal of stratum corneum.
related content
- “Permeation of topically applied magnesium ions through human skin is facilitated by hair follicles,” Chandrasekaran et al, Magnes Res, 2016.
This page is part of the PainScience BIBLIOGRAPHY, which contains plain language summaries of thousands of scientific papers & others sources. It’s like a highly specialized blog. A few highlights:
- Gabapentinoids and Risk of Hip Fracture. Leung 2024 JAMA Netw Open.
- Classical Conditioning Fails to Elicit Allodynia in an Experimental Study with Healthy Humans. Madden 2017 Pain Med.
- Topical glyceryl trinitrate (GTN) and eccentric exercises in the treatment of mid-portion achilles tendinopathy (the NEAT trial): a randomised double-blind placebo-controlled trial. Kirwan 2024 Br J Sports Med.
- Placebo analgesia in physical and psychological interventions: Systematic review and meta-analysis of three-armed trials. Hohenschurz-Schmidt 2024 Eur J Pain.
- Recovery trajectories in common musculoskeletal complaints by diagnosis contra prognostic phenotypes. Aasdahl 2021 BMC Musculoskelet Disord.