PainScience.com Sensible advice for aches, pains & injuries
 
 
bibliography * The PainScience Bibliography contains plain language summaries of thousands of scientific papers and others sources, like a specialized blog. This page is about a single scientific paper in the bibliography, Lund 2010.

Study of rat nerves shows one way pain might become chronic

updated
Lund JP, Sadeghi S, Athanassiadis T, Caram Salas N, Auclair F, Thivierge B, Arsenault I, Rompré P, Westberg KG, Kolta A. Assessment of the potential role of muscle spindle mechanoreceptor afferents in chronic muscle pain in the rat masseter muscle. PLoS One. 2010;5(6):e11131. PubMed #20559566.
Tags: chronic pain, etiology, muscle pain, neurology, pain problems, pro, muscle

PainSci summary of Lund 2010?This page is one of thousands in the PainScience.com bibliography. It is not a general article: it is focused on a single scientific paper, and it may provide only just enough context for the summary to make sense. Links to other papers and more general information are provided at the bottom of the page, as often as possible. ★★★★☆?4-star ratings are for bigger/better studies and reviews published in more prestigious journals, with only quibbles. Ratings are a highly subjective opinion, and subject to revision at any time. If you think this paper has been incorrectly rated, please let me know.

Researchers injected the jaw muscles of rats to induce pain and then studied neurological changes. They focused on the nerve receptors that detect changes of length in muscle (muscle spindles), which are not normally associated with pain. However, the spindles changed in the painful rat muscle. In particular, nerve impulses began to “leak” (ectopic action potentials) instead of staying nicely within the muscle spindle, possibly stimulating nearby pain receptors. The researchers suggest that this nerve-ending behaviour could help explain how muscle pain can become chronic.

~ Paul Ingraham

original abstractAbstracts here may not perfectly match originals, for a variety of technical and practical reasons. Some abstacts are truncated for my purposes here, if they are particularly long-winded and unhelpful. I occasionally add clarifying notes. And I make some minor corrections.

BACKGROUND: The phenotype of large diameter sensory afferent neurons changes in several models of neuropathic pain. We asked if similar changes also occur in "functional" pain syndromes.

METHODOLOGY/PRINCIPAL FINDINGS: Acidic saline (AS, pH 4.0) injections into the masseter muscle were used to induce persistent myalgia. Controls received saline at pH 7.2. Nocifensive responses of Experimental rats to applications of Von Frey Filaments to the masseters were above control levels 1-38 days post-injection. This effect was bilateral. Expression of c-Fos in the Trigeminal Mesencephalic Nucleus (NVmes), which contains the somata of masseter muscle spindle afferents (MSA), was above baseline levels 1 and 4 days after AS. The resting membrane potentials of neurons exposed to AS (n = 167) were hyperpolarized when compared to their control counterparts (n = 141), as were their thresholds for firing, high frequency membrane oscillations (HFMO), bursting, inward and outward rectification. The amplitude of HFMO was increased and spontaneous ectopic firing occurred in 10% of acid-exposed neurons, but never in Controls. These changes appeared within the same time frame as the observed nocifensive behaviour. Ectopic action potentials can travel centrally, but also antidromically to the peripheral terminals of MSA where they could cause neurotransmitter release and activation of adjacent fibre terminals. Using immunohistochemistry, we confirmed that annulospiral endings of masseter MSA express the glutamate vesicular transporter VGLUT1, indicating that they can release glutamate. Many capsules also contained fine fibers that were labelled by markers associated with nociceptors (calcitonin gene-related peptide, Substance P, P2X3 receptors and TRPV1 receptors) and that expressed the metabotropic glutamate receptor, mGluR5. Antagonists of glutamatergic receptors given together with the 2(nd) injection of AS prevented the hypersensitivity observed bilaterally but were ineffective if given contralaterally.

CONCLUSIONS/SIGNIFICANCE: Low pH leads to changes in several electrical properties of MSA, including initiation of ectopic action potentials which could propagate centrally but could also invade the peripheral endings causing glutamate release and activation of nearby nociceptors within the spindle capsule. This peripheral drive could contribute both to the transition to, and maintenance of, persistent muscle pain as seen in some "functional" pain syndromes.


This page is part of the PainScience BIBLIOGRAPHY, which contains plain language summaries of thousands of scientific papers & others sources. It’s like a highly specialized blog. A few highlights: