Detailed guides to painful problems, treatments & more

Stretching and heart rate variability in inflexible subjects

PainSci » bibliography » Farinatti et al 2011
Tags: treatment, stretch, exercise, self-treatment, muscle

Four pages on PainSci cite Farinatti 2011: 1. Does Massage Therapy Work?2. Quite a Stretch3. The Tyranny of Yoga and Meditation4. Get in the Pool for Pain

PainSci notes on Farinatti 2011:

This study of stretching found that

multiple-set flexibility training sessions enhanced the vagal modulation and sympathovagal balance [that’s good] in the acute postexercise recovery, at least in subjects with low flexibility levels. … stretching routines may contribute to a favorable autonomic activity change in untrained subjects.

This seems like a fairly straightforward bit of good-news science about stretching. It’s not a surprising idea that movement would have some systemic regulatory effects (motion is lotion, use it or lose it), but it’s nice to see some corroboration of that common sensical notion, and it’s also nice to know that perhaps just stretching did this (to the extent we can learn anything from a single study). If true, it makes for nice evidence to support a general stretching habit, yoga, mobilizations, really any kind of “massaging with movement,” and probably even massage itself.

original abstract Abstracts here may not perfectly match originals, for a variety of technical and practical reasons. Some abstacts are truncated for my purposes here, if they are particularly long-winded and unhelpful. I occasionally add clarifying notes. And I make some minor corrections.

The study investigated the heart rate (HR) and heart rate variability (HRV) before, during, and after stretching exercises performed by subjects with low flexibility levels. Ten men (age: 23 ± 2 years; weight: 82 ± 13 kg; height: 177 ± 5 cm; sit-and-reach: 23 ± 4 cm) had the HR and HRV assessed during 30 minutes at rest, during 3 stretching exercises for the trunk and hamstrings (3 sets of 30 seconds at maximum range of motion), and after 30 minutes postexercise. The HRV was analyzed in the time ('SD of normal NN intervals' [SDNN], 'root mean of the squared sum of successive differences' [RMSSD], 'number of pairs of adjacent RR intervals differing by>50 milliseconds divided by the total of all RR intervals' [PNN50]) and frequency domains ('low-frequency component' [LF], 'high-frequency component' [HF], LF/HF ratio). The HR and SDNN increased during exercise (p < 0.03) and decreased in the postexercise period (p = 0.02). The RMSSD decreased during stretching (p = 0.03) and increased along recovery (p = 0.03). At the end of recovery, HR was lower (p = 0.01), SDNN was higher (p = 0.02), and PNN50 was similar (p = 0.42) to pre-exercise values. The LF increased (p = 0.02) and HF decreased (p = 0.01) while stretching, but after recovery, their values were similar to pre-exercise (p = 0.09 and p = 0.3, respectively). The LF/HF ratio increased during exercise (p = 0.02) and declined during recovery (p = 0.02), albeit remaining higher than at rest (p = 0.03). In conclusion, the parasympathetic activity rapidly increased after stretching, whereas the sympathetic activity increased during exercise and had a slower postexercise reduction. Stretching sessions including multiple exercises and sets acutely changed the sympathovagal balance in subjects with low flexibility, especially enhancing the postexercise vagal modulation.

This page is part of the PainScience BIBLIOGRAPHY, which contains plain language summaries of thousands of scientific papers & others sources. It’s like a highly specialized blog. A few highlights:

PainSci Member Login » Submit your email to unlock member content. If you can’t remember/access your registration email, please contact me. ~ Paul Ingraham, PainSci Publisher